FORMULA & CONVERSION SHEET for DRINKING WATER TREATMENT & DISTRIBUTION

<u>CONVERSIONS</u>			FLOW AND VELOCITY	WATER-BRAKE-MOTOR HORSEPOWER
1 psi	=	2.31 ft. of head	"Q" = FLOW expressed in	WHP = GPM x Total Head (ft)
1 ft. of head	=	.433 psi	cubic ft per sec. (cfs)	3960
1 cuft of water	=	7.48 gallons		
1 cuft of water	=	62.4 lbs.		$BHP = \underline{GPM \times Total \ Head \ (ft)}$
1 gallon	=	8.34 lbs.	"V" = VELOCITY expressed in	3960 x E _p
1 gallon	=	3,785 ml	ft per second (fps)	
1 Liter	=	1,000 ml		$MHP = \underline{GPM \times Total \ Head \ (ft)}$
1 Liter	=	1,000 grams		$3960 \times E_p \times E_m$
1 mg/L	=	8.34 lbs/MG	"A" = AREA expressed in square	
1 ppm	=	1 mg/L	feet (sqft)	$E_p = Pump Efficiency (%)$
1 ml	=	1 gram	, <u>-</u> .	$E_{\rm m} = Motor Efficiency (\%)$
1 pound	=	453.6 grams		
1 pound	=	7,000 grains		CONVERSION OF TEMPERATURES
1 kilogram	=	1,000 grams	$Q = A \times V$	
1 cuft/sec	=	448.8 gpm		$^{\circ} F = (^{\circ}C \times 1.8) + 32$
1 MGD	=	1.55 cuft/sec	$V = Q \div A$	
1 MGD	=	694.5 gpm	·	$^{\circ}$ C = $(^{\circ}$ F - 32)
1 HP	=	33,000 ft.lbs./min	$A = Q \div V$	1.8
1 HP	=	.746 kilowatt		Check your work: water freezes at 32°F and 0°C
1 mile	=	5,280 feet		water boils at 212°F and 100°C
<u>OBJECT</u>		AREA (ft²)	VOLUME (ft³)	
Rectangle		Length' x Width'	Length' x Width' x Height'	FILTRATION RATE = Flow (gpm) ÷ Surface Area (sqft)
Circle		.785 x D' x D'		BACKWASH RATE = Flow (gpm) ÷ Surface Area (sqft)
Triangle		1/2 (Base' x Altitude')		SURFACE OVERFLOW RATE = Flow (gpm) ÷ Area (sqft)
Cylinder			.785 x D' x D' x Length'	DETENTION TIME = Volume (gals) ÷ Flow (gpm)
Sphere			.5236 x D' x D' x D'	WEIR OVERFLOW RATE = Flow (gpm) ÷ Feet of weir
				SPECIFIC CAPACITY = Well yield (gpm)
Diameter $(D) =$	Diameter (D) = $2 x$ radius		Circumference = $3.14 \times D$	Drawdown (feet)
Perimeter = Sum of t			he Sides	FILTRATION RATE: for every 1.6 in./min. of rise or fall = 1 gpm/f
Lbs. of chemical = $\underline{ppm \times 8.34 \times MG}$				Specific Gravity = $\underline{\text{wt. of a particular liquid}}$
% purity			CI Davis - D	equivalent wt. of water
Cl ₂ Dosage = Demand + Residual				
$ppm = \underline{lbs. of chemical x \% purity}$				Strength of Solution = $\underline{\text{wt. of chemical}}$

wt. of solution

8.34 x MG